17,964 research outputs found

    Renormalization Group and Conformal Symmetry Breaking in the Chern-Simons Theory Coupled to Matter

    Full text link
    The three-dimensional Abelian Chern-Simons theory coupled to a scalar and a fermionic field of arbitrary charge is considered in order to study conformal symmetry breakdown and the effective potential stability. We present an improved effective potential computation based on two-loop calculations and the renormalization group equation: the later allows us to sum up series of terms in the effective potential where the power of the logarithms are one, two and three units smaller than the total power of coupling constants (i.e., leading, next-to-leading and next-to-next-to-leading logarithms). For the sake of this calculation we determined the beta function of the fermion-fermion-scalar-scalar interaction and the anomalous dimension of the scalar field. We shown that the improved effective potential provides a much more precise determination of the properties of the theory in the broken phase, compared to the standard effective potential obtained directly from the loop calculations. This happens because the region of the parameter space where dynamical symmetry breaking occurs is drastically reduced by the improvement discussed here.Comment: 29 pages, 10 figures, 1 tabl

    An S3S_3 Model for Lepton Mass Matrices with Nearly Minimal Texture

    Full text link
    We propose a simple extension of the electroweak standard model based on the discrete S3S_3 symmetry that is capable of realizing a nearly minimal Fritzsch-type texture for the Dirac mass matrices of both charged leptons and neutrinos. This is achieved with the aid of additional Z5Z_5 and Z3Z_3 symmetries, one of which can be embedded in U(1)BLU(1)_{B-L}. Five complex scalar singlet fields are introduced in addition to the SM with right-handed neutrinos. Although more general, the modified texture of the model retains the successful features of the minimal texture without fine-tuning; namely, it accommodates the masses and mixing of the leptonic sector and relates the emergence of large leptonic mixing angles with the seesaw mechanism. For large deviations of the minimal texture, both quasidegenerate spectrum or inverted hierarchy are allowed for neutrino masses.Comment: 11pp, 2 figures. v2: vev alignment addressed, additional analysis performed; to appear in PR

    Non-perturbative fixed points and renormalization group improved effective potential

    Get PDF
    The stability conditions of a renormalization group improved effective potential have been discussed in the case of scalar QED and QCD with a colorless scalar. We calculate the same potential in these models assuming the existence of non-perturbative fixed points associated to a conformal phase. In the case of scalar QED the barrier of instability found previously is barely displaced as we approach the fixed point, and in the case of QCD with a colorless scalar not only the barrier is changed but the local minimum of the potential is also changed.Comment: 6 pages, 8 figures, References added. Matching the journal versio

    Closing the SU(3)LU(1)XSU(3)_L\otimes U(1)_X Symmetry at Electroweak Scale

    Full text link
    We show that some models with SU(3)CSU(3)LU(1)XSU(3)_C\otimes SU(3)_L\otimes U(1)_X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2)L+RSU(2)_{L+R} symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1)XU(1)_X's coupling constant, gXg_X, the sine of the weak mixing angle sinθW\sin\theta_W, and the mass of the WW boson, MWM_W. In the limit in which this symmetry is valid it avoids the tree level mixing of the ZZ boson of the Standard Model with the extra ZZ^\prime boson. We have verified that the oblique TT parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3)L+RSU(3)_{L+R} custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, being the see-saw mechanism mandatory to obtain light active neutrinos. Moreover, the approximate SU(2)L+RSU(3)L+RSU(2)_{L+R}\subset SU(3)_{L+R} symmetry implies that the extra non-standard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner.Comment: 32 pages, no figure, RevTeX. Some typos correcte
    corecore